2021年黑龙江省龙东地区中考数学试卷(含答案与解析)
一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是
A. |
众数 |
B. |
中位数 |
C. |
平均数 |
D. |
方差 |
有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是
A. |
14 |
B. |
11 |
C. |
10 |
D. |
9 |
为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有
A. |
5种 |
B. |
6种 |
C. |
7种 |
D. |
8种 |
如图,在平面直角坐标系中,菱形 的边 轴,垂足为 ,顶点 在第二象限,顶点 在 轴正半轴上,反比例函数 的图象同时经过顶点 、 .若点 的横坐标为5, ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,平行四边形 的对角线 、 相交于点 ,点 为 的中点,连接 并延长,交 的延长线于点 ,交 于点 ,连接 、 ,若平行四边形 的面积为48,则 的面积为
A. |
5.5 |
B. |
5 |
C. |
4 |
D. |
3 |
如图,在正方形 中,对角线 与 相交于点 ,点 在 的延长线上,连接 ,点 是 的中点,连接 交 于点 ,连接 ,若 , .则下列结论:① ;② ;③ ;④ ;⑤点 到 的距离为 .其中正确的结论是
A. |
①②③④ |
B. |
①③④⑤ |
C. |
①②③⑤ |
D. |
①②④⑤ |
截止到2020年7月底,中国铁路营业里程达到14.14万公里,位居世界第二.将数据14.14万用科学记数法表示为 .
如图,在平行四边形 中,对角线 、 相交于点 ,在不添加任何辅助线的情况下,请你添加一个条件 ,使平行四边形 是矩形.
一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是 .
如图,在 中, , , ,以点 为圆心,3为半径的 ,与 交于点 ,过点 作 交 于点 ,点 是边 上的动点,则 的最小值为 .
在矩形 中, ,将矩形 沿某直线折叠,使点 与点 重合,折痕与直线 交于点 ,且 ,则矩形 的面积为 .
如图,菱形 中, , ,延长 至 ,使 ,以 为一边,在 的延长线上作菱形 ,连接 ,得到 ;再延长 至 ,使 ,以 为一边,在 的延长线上作菱形 ,连接 ,得到△ 按此规律,得到△ ,记 的面积为 ,△ 的面积为 ,△ 的面积为 ,则 .
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内, 的三个顶点坐标分别为 , , .
(1)画出 关于 轴对称的△ ,并写出点 的坐标;
(2)画出 绕点 顺时针旋转 后得到的△ ,并写出点 的坐标;
(3)在(2)的条件下,求点 旋转到点 所经过的路径长(结果保留 .
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 ,与抛物线的对称轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 是对称轴左侧抛物线上的一个动点,点 在射线 上,若以点 、 、 为顶点的三角形与 相似,请直接写出点 的坐标.
为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩分成 、 、 、 、 五个等级进行统计,并绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)本次调查中共抽取 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,求 等级所对应的扇形圆心角的度数;
(4)若该校有1200名学生参加此次竞赛,估计这次竞赛成绩为 和 等级的学生共有多少名?
已知 、 两地相距 ,一辆货车从 前往 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从 地前往 地,到达 地后(在 地停留时间不计)立即原路原速返回.如图是两车距 地的距离 与货车行驶时间 之间的函数图象,结合图象回答下列问题:
(1)图中 的值是 ;轿车的速度是 ;
(2)求货车从 地前往 地的过程中,货车距 地的距离 与行驶时间 之间的函数关系式;
(3)直接写出轿车从 地到 地行驶过程中,轿车出发多长时间与货车相距 ?
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具 件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?
如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 , ,动点 以每秒1个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 秒.
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.