2017年湖北省荆州市中考数学试卷
中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为
A. B. C. D.
一把直尺和一块三角板 (含 、 角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点 、点 ,另一边与三角板的两直角边分别交于点 、点 ,且 ,那么 的大小为
A. B. C. D.
为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:
户外活动的时间(小时) |
1 |
2 |
3 |
6 |
学生人数(人 |
2 |
2 |
4 |
2 |
则关于“户外活动时间”这组数据的众数、中位数、平均数分别是
A.3、3、3B.6、2、3C.3、3、2D.3、2、3
为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?
A.140元B.150元C.160元D.200元
《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈 尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为 尺,则可列方程为
A. B.
C. D.
规定:如果关于 的一元二次方程 有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
①方程 是倍根方程;
②若关于 的方程 是倍根方程,则 ;
③若关于 的方程 是倍根方程,则抛物线 与 轴的公共点的坐标是 和 ;
④若点 在反比例函数 的图象上,则关于 的方程 是倍根方程.
上述结论中正确的有
A.①②B.③④C.②③D.②④
如图,在 的正方形网格中有一条线段 ,点 与点 均在格点上.请在这个网格中作线段 的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.
如图,在平面直角坐标系中,矩形 的顶点 、 分别在 轴的负半轴、 轴的正半轴上,点 在第二象限.将矩形 绕点 顺时针旋转,使点 落在 轴上,得到矩形 , 与 相交于点 .若经过点 的反比例函数 的图象交 于点 , , ,则 的长为 .
如图,在矩形 中,连接对角线 、 ,将 沿 方向平移,使点 移到点 ,得到 .
(1)求证: ;
(2)请探究 的形状,并说明理由.
某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级: 、 、 、 ,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:
(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为 等的人数为 人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
如图, 某数学活动小组为测量学校旗杆 的高度, 沿旗杆正前方 米处的点 出发, 沿斜面坡度 的斜坡 前进 4 米到达点 ,在点 处安置测角仪, 测得旗杆顶部 的仰角为 ,量得仪器的高 为 1.5 米 . 已知 、 、 、 、 在同一平面内, , . 求旗杆 的高度 . (参 考数据: , , . 计算结果保留根号)
已知关于 的一元二次方程 ,其中 为常数.
(1)求证:无论 为何值,方程总有两个不相等实数根;
(2)已知函数 的图象不经过第三象限,求 的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求 的最大整数值.
荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价 (元 千克)与时间第 (天 之间的函数关系为:
,日销售量 (千克)与时间第 (天 之间的函数关系如图所示:
(1)求日销售量 与时间 的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠 元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间 的增大而增大,求 的取值范围.
如图在平面直角坐标系中,直线 与 轴、 轴分别交于 、 两点,点 、 同时从点 出发,运动时间为 秒.其中点 沿射线 运动,速度为每秒4个单位长度,点 沿射线 运动,速度为每秒5个单位长度.以点 为圆心, 长为半径作 .
(1)求证:直线 是 的切线;
(2)过点 左侧 轴上的任意一点 ,作直线 的垂线 ,垂足为 .若 与 相切于点 ,求 与 的函数关系式(不需写出自变量的取值范围);
(3)在(2)的条件下,是否存在点 ,直线 、 、 轴与 同时相切?若存在,请直接写出此时点 的坐标;若不存在,请说明理由.