2020年辽宁省铁岭市中考数学试卷
一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是
A. |
|
B. |
|
C. |
|
D. |
|
我市在落实国家"精准扶贫"政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工 米,乙工程队每天施工 米.根据题意,所列方程组正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,矩形 的顶点 在反比例函数 的图象上,点 和点 在 边上, ,连接 , 轴,则 的值为
A. |
|
B. |
3 |
C. |
4 |
D. |
|
如图,二次函数 的图象的对称轴是直线 ,则以下四个结论中:① ,② ,③ ,④ .正确的个数是
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
伴随"互联网 "时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为 .
甲、乙两人参加"环保知识"竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为 , ,则这6次比赛成绩比较稳定的是 .(填"甲"或"乙"
如图,在 中, , , ,以 为圆心,以适当的长为半径作弧,交 于点 ,交 于点 .分别以 , 为圆心,以大于 的长为半径作弧,两弧在 的内部相交于点 ,作射线 ,交 于点 ,点 在 边上, ,连接 ,则 的周长为 .
一张菱形纸片 的边长为 ,高 等于边长的一半,将菱形纸片沿直线 折叠,使点 与点 重合,直线 交直线 于点 ,则 的长为 .
如图, ,正方形 ,正方形 ,正方形 ,正方形 , ,的顶点 , , , , ,在射线 上,顶点 , , , , , ,在射线 上,连接 交 于点 ,连接 交 于点 ,连接 交 于点 , ,连接 交 于点 ,连接 交 于点 , ,按照这个规律进行下去,设 与△ 的面积之和为 ,△ 与△ 的面积之和为 ,△ 与△ 的面积之和为 , ,若 ,则 等于 .(用含有正整数 的式子表示)
某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次被调查的学生有 人;
(2)请补全条形统计图,并求出扇形统计图中"航模"所对应的圆心角的度数;
(3)通过了解,喜爱"航模"的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.
某中学为了创设"书香校园",准备购买 , 两种书架,用于放置图书.在购买时发现, 种书架的单价比 种书架的单价多20元,用600元购买 种书架的个数与用480元购买 种书架的个数相同.
(1)求 , 两种书架的单价各是多少元?
(2)学校准备购买 , 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个 种书架?
如图,小明利用学到的数学知识测量大桥主架在水面以上的高度 ,在观测点 处测得大桥主架顶端 的仰角为 ,测得大桥主架与水面交汇点 的俯角为 ,观测点与大桥主架的水平距离 为60米,且 垂直于桥面.(点 , , , 在同一平面内)
(1)求大桥主架在桥面以上的高度 ;(结果保留根号)
(2)求大桥主架在水面以上的高度 .(结果精确到1米)
(参考数据 , , ,
小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量 (本 与销售单价 (元 之间满足一次函数关系,三对对应值如下表:
销售单价 (元 |
12 |
14 |
16 |
每周的销售量 (本 |
500 |
400 |
300 |
(1)求 与 之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为 元 ,且 为整数),设每周销售该款笔记本所获利润为 元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
如图,四边形 内接于 , 是直径, ,连接 ,过点 的直线与 的延长线相交于点 ,且 .
(1)求证:直线 是 的切线;
(2)若 , ,求 的长.
在等腰 和等腰 中, , ,将 绕点 逆时针旋转,连接 ,点 为线段 的中点,连接 , .
(1)如图1,当点 旋转到 边上时,请直接写出线段 与 的位置关系和数量关系;
(2)如图2,当点 旋转到 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)若 , ,在 绕点 逆时针旋转的过程中,当 时,请直接写出线段 的长.