2019年浙江省舟山市中考数学试卷
2019年1月3日10时26分,"嫦娥四号"探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为
A. |
|
B. |
|
C. |
|
D. |
|
2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是
A. |
签约金额逐年增加 |
B. |
与上年相比,2019年的签约金额的增长量最多 |
C. |
签约金额的年增长速度最快的是2016年 |
D. |
2018年的签约金额比2017年降低了 |
如图,已知 上三点 , , ,半径 , ,切线 交 延长线于点 ,则 的长为
A. |
2 |
B. |
|
C. |
|
D. |
|
中国清代算书《御制数理精蕴》中有这样一题:"马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?"设马每匹 两,牛每头 两,根据题意可列方程组为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在直角坐标系中,已知菱形 的顶点 , .作菱形 关于 轴的对称图形 ,再作图形 关于点 的中心对称图形 ,则点 的对应点 的坐标是
A. |
|
B. |
|
C. |
|
D. |
|
小飞研究二次函数 为常数)性质时得到如下结论:
①这个函数图象的顶点始终在直线 上;
②存在一个 的值,使得函数图象的顶点与 轴的两个交点构成等腰直角三角形;
③点 , 与点 , 在函数图象上,若 , ,则 ;
④当 时, 随 的增大而增大,则 的取值范围为 .
其中错误结论的序号是
A. |
① |
B. |
② |
C. |
③ |
D. |
④ |
如图,一副含和角的三角板和拼合在个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为 ;连接,则的面积最大值为 .
如图,在直角坐标系中,已知点,等边三角形的顶点在反比例函数的图象上.
(1)求反比例函数的表达式.
(2)把向右平移个单位长度,对应得到△当这个函数图象经过△一边的中点时,求的值.
在的方格纸中,点,,都在格点上,按要求画图:
(1)在图1中找一个格点,使以点,,,为顶点的四边形是平行四边形.
(2)在图2中仅用无刻度的直尺,把线段三等分(保留画图痕迹,不写画法).
在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中、两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:
[信息一]小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);
[信息二]图中,从左往右第四组的成绩如下
75 |
75 |
79 |
79 |
79 |
79 |
80 |
80 |
81 |
82 |
82 |
83 |
83 |
84 |
84 |
84 |
[信息三]、两小区各50名居民成绩的平均数、中位数、众数、优秀率分及以上为优秀)、方差等数据如下(部分空缺)
小区 |
平均数 |
中位数 |
众数 |
优秀率 |
方差 |
75.1 |
79 |
277 |
|||
75.1 |
77 |
76 |
211 |
根据以上信息,回答下列问题:
(1)求小区50名居民成绩的中位数.
(2)请估计小区500名居民中能超过平均数的有多少人?
(3)请尽量从多个角度比较、分析,两小区居民掌握垃圾分类知识的情况.
某挖掘机的底座高米,动臂米,米,与的固定夹角.初始位置如图1,斗杆顶点与铲斗顶点所在直线垂直地面于点,测得(示意图.工作时如图3,动臂会绕点转动,当点,,在同一直线时,斗杆顶点升至最高点(示意图.
(1)求挖掘机在初始位置时动臂与的夹角的度数.
(2)问斗杆顶点的最高点比初始位置高了多少米?(精确到0.1米)
(参考数据:,,,,
某农作物的生长率与温度有如下关系:如图,当时可近似用函数刻画;当时可近似用函数刻画.
(1)求的值.
(2)按照经验,该作物提前上市的天数(天与生长率之间满足已学过的函数关系,部分数据如下:
生长率 |
0.2 |
0.25 |
0.3 |
0.35 |
提前上市的天数(天 |
0 |
5 |
10 |
15 |
求:①关于的函数表达式;
②用含的代数式表示.
③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到时的成本为200元天,但若欲加温到,由于要采用特殊方法,成本增加到400元天.问加温到多少度时增加的利润最大?并说明理由.(注农作物上市售出后大棚暂停使用)
小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
(1)温故:如图1,在中,于点,正方形的边在上,顶点,分别在,上,若,,求正方形的边长(用,表示).
(2)操作:如何画出这个正方形呢?
如图2,小波画出了图1的,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在上任取一点,画正方形,使点,在边上,点在内,然后连结,并延长交于点,画于点,交于点,于点,得到四边形.
(3)推理:证明图2中的四边形是正方形.
(4)拓展:小波把图2中的线段称为“波利亚线”,在该线上截取,连结,(如图,当时,求“波利亚线” 的长(用,表示).
请帮助小波解决“温故”、“推理”、“拓展”中的问题.