2019年吉林省中考数学试卷
若 a 为实数,则下列各式的运算结果比 a 小的是 ( )
A. |
a+1 |
B. |
a-1 |
C. |
a×1 |
D. |
a÷1 |
把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 ( )
A. |
30° |
B. |
90° |
C. |
120° |
D. |
180° |
如图,在 ⊙O 中, ̂AB 所对的圆周角 ∠ACB=50° ,若 P 为 ̂AB 上一点, ∠AOP=55° ,则 ∠POB 的度数为 ( )
A. |
30° |
B. |
45° |
C. |
55° |
D. |
60° |
曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光.如图, A 、 B 两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是 ( )
A. |
两点之间,线段最短 |
B. |
平行于同一条直线的两条直线平行 |
C. |
垂线段最短 |
D. |
两点确定一条直线 |
如图,E为ΔABC边CA延长线上一点,过点E作ED//BC.若∠BAC=70°,∠CED=50°,则∠B= °.
如图,在四边形ABCD中,AB=10,BD⊥AD.若将ΔBCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长为 .
在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时同地测得一栋楼的影长为90m,则这栋楼的高度为 m.
如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱的顶点在上.若,,则阴影部分图形的面积是 (结果保留.
甲口袋中装有红色、绿色两把扇子,这两把扇子除颜色外无其他差别;乙口袋中装有红色、绿色两条手绢,这两条手绢除颜色外无其他差别.从甲口袋中随机取出一把扇子,从乙口袋中随机取出一条手绢,用画树状图或列表的方法,求取出的扇子和手绢都是红色的概率.
图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中、、、均为格点,按下列要求画图:
(1)在图①中,以为对角线画一个菱形,且,为格点;
(2)在图②中,以为对角线画一个对边不相等的四边形,且,为格点,.
问题解决
糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?
反思归纳
现有根竹签,个山楂.若每根竹签串个山楂,还剩余个山楂,则下列等式成立的是 (填写序号).
(1);(2);(3).
墙壁及淋浴花洒截面如图所示.已知花洒底座与地面的距离为,花洒的长为,与墙壁的夹角为.求花洒顶端到地面的距离(结果精确到.(参考数据:,,
某地区有城区居民和农村居民共80万人.某机构准备采用抽取样本的方法调查该地区居民“获取信息的最主要途径”.
(1)该机构设计了以下三种调查方案:
方案一:随机抽取部分城区居民进行调查;
方案二:随机抽取部分农村居民进行调查;
方案三:随机抽取部分城区居民和部分农村居民进行调查.
其中最具有代表性的一个方案是 ;
(2)该机构采用了最具有代表性的调查方案进行调查.供选择的选项有:电脑、手机、电视、广播、其他,共五个选项.每位被调查居民只选择一个选项.现根据调查结果绘制如下统计图,请根据统计图回答下列问题:
①这次接受调查的居民人数为 人;
②统计图中人数最多的选项为 ;
③请你估计该地区居民和农村居民将“电脑和手机”作为“获取信息的最主要途径”的总人数.
甲、乙两车分别从,两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到地,乙车立即以原速原路返回到地.甲、乙两车距地的路程与各自行驶的时间之间的关系如图所示.
(1) , ;
(2)求乙车距地的路程关于的函数解析式,并写出自变量的取值范围;
(3)当甲车到达地时,求乙车距地的路程.
性质探究
如图①,在等腰三角形中,,则底边与腰的长度之比为 .
理解运用
(1)若顶角为的等腰三角形的周长为,则它的面积为 ;
(2)如图②,在四边形中,.
①求证:;
②在边,上分别取中点,,连接.若,,直接写出线段的长.
类比拓展
顶角为的等腰三角形的底边与一腰的长度之比为 (用含的式子表示).
如图,在矩形中,,,为边上一点,,连接.动点、从点同时出发,点以的速度沿向终点运动;点以的速度沿折线向终点运动.设点运动的时间为,在运动过程中,点,点经过的路线与线段围成的图形面积为.
(1) , ;
(2)求关于的函数解析式,并写出自变量的取值范围;
(3)当时,直接写出的值.