浙江省杭州市开发区八年级下学期期末数学试卷
函数y=中,自变量x的取值范围( )
A.x>4 | B.x<4 | C.x≥4 | D.x≤4 |
用反证法证明命题:若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是( )
A.假设a、b、c都是偶数 |
B.假设a、b、c至多有一个是偶数 |
C.假设a、b、c都不是偶数 |
D.假设a、b、c至多有两个是偶数 |
已知平行四边形ABCD中,∠B=4∠A,则∠C=( )
A.18° | B.36° | C.72° | D.144° |
若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是( )
A.k<1 | B.k≤1 | C.k<1且k≠0 | D.k≤1且k≠0 |
已知A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是( )
A.y2>y1>y3 | B.y1>y2>y3 | C.y3>y2>y1 | D.y1>y3>y2 |
用配方法解方程x2-2x-5=0时,原方程应变形为( )
A.(x+1)2=6 | B.(x+2)2=9 | C.(x-1)2="6" | D.(x-2)2=9 |
下列命题:
①在函数:y=-2x-1;y=3x;y=;y=-;y=(x<0)中,y随x增大而减小的有3个函数;
②对角线互相垂直平分且相等的四边形是正方形;
③反比例函数图象是两条无限接近坐标轴的曲线,它只是中心对称图形;
④已知数据x1、x2、x3的方差为s2,则数据x1+2,x3+2,x3+2的方差为s3+2.
其中是真命题的个数是( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为( )
A.2 | B.2 | C.4 | D.2+2 |
如图,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E在BC边上可移动的最大距离为( )
A.1 B.2 C.4 D.5
已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 ℃.
如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则▱ABCD的周长为 .
如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为 米.
如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k= ,满足条件的P点坐标是 .
如图,在菱形ABCD中,边长为10,∠A=60°,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是 ;四边形A2015B2015C2015D2015的周长 .
某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.
(1)请你根据图中的数据,填写下表;
姓名 |
平均数 |
众数 |
方差 |
王亮 |
|
7 |
|
李刚 |
7 |
|
2.8 |
(2)你认为谁的成绩比较稳定,为什么?
(3)若你是教练,你打算选谁?简要说明理由.
已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:四边形ADCF是平行四边形;
(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.
物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变.
(1)求二、三这两个月的月平均增长率;
(2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?
已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)求证:△BCE≌△DCF.
(2)判断OG与BF有什么关系,证明你的结论.
(3)若DF2=8-4,求正方形ABCD的面积?
反比例函数y1=(x>0,k≠0)的图象经过点(1,3),P点是直线y2=-x+6上一个动点,如图所示,设P点的横坐标为m,且满足-m+6>,过P点分别作PB⊥x轴、PA⊥y轴,垂足分别为B、A,与双曲线分别交于D、C两点,连接OC、OD、CD.
(1)求k的值并结合图象求出m的取值范围;
(2)在P点运动过程中,求线段OC最短时P点的坐标;
(3)将三角形OCD沿着CD翻折,点O的对应点为O′,得到四边形O′COD,问:四边形O′COD能否为菱形?若能,求出P点坐标;若不能,说明理由.