江苏省南京市高淳区中考二模数学试卷
在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是( )
分数 |
50 |
60 |
70 |
80 |
90 |
100 |
人数 |
1 |
2 |
8 |
13 |
14 |
4 |
A、70,80 B、70,90 C、80,90 D、90,100
如图,一个由5个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是( )
A.主视图的面积为5 | B.左视图的面积为3 |
C.俯视图的面积为5 | D.俯视图的面积为3 |
如图,四边形ABCD内接于⊙O,∠A=100°,则劣弧的度数是( )
A.80° | B.100° | C.130° | D.160° |
如图,在平面直角坐标系xOy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为( )
A.(1007,1008) | B.(1008,1007) |
C.(1006,1007) | D.(1007,1006) |
如图,在直角坐标系中,点A、B、C的坐标分别为(0,3)、(4,3)、(0,-1),则△ABC外接圆的圆心坐标为 .
正比例函数y1=k1x的图象与反比例函数y2=的图象相交于点A(-1,2)和点B.当y1<y2时,自变量x的取值范围是 .
某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少20张.要使门票收入达到38500元,票价应定为多少元?若设票价为x元,则可列方程为 .
如图,等边△ABC中,BC=6,D、E分别在BC、AC上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为 .
某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.
根据以上信息完成下列问题:
(1)统计表中的m= ,n= ,并补全条形统计图;
(2)扇形统计图中“C组”所对应的圆心角的度数是 ;
(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.
一个不透明的袋中,装有编号为①、②、③、④的四个球,它们除了编号外其余都相同.
(1)从袋中任意摸出一个球,摸到编号为奇数的球的概率为 ;
(2)从袋中任意摸出两个球,求摸到的球编号都为奇数的概率.
如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.
(1)求证:四边形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的边长.
如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东60°的方向,从B测得灯塔C在北偏西27°的方向,求灯塔C与观测点A的距离(精确到0.1km).
(参考数据:sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,≈1.73)
从南京到某市可乘坐普通列车,行驶路程是520千米;也可乘坐高铁,行驶路程是400千米.已知高铁的平均速度是普通列车平均速度的2.5倍,且从南京到该市乘坐高铁比乘坐普通列车要少用3小时.求高铁行驶的平均速度.
如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.
(1)求证:直线BC是⊙O的切线;
(2)若OA=3,AB=2,求BP的长.
已知二次函数y=x2-ax-2a2(a为常数,且a≠0).
(1)证明该二次函数的图象与x轴的正半轴、负半轴各有一个交点;
(2)若该二次函数的图象与y轴的交点坐标为(0,-2),试求该函数图象的顶点坐标.
如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线 BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.
请根据图中的信息,解答下列问题:
(1)AD= cm,BC= cm;
(2)求a的值,并用文字说明点N所表示的实际意义;
(3)直接写出当自变量t为何值时,函数y的值等于5.
如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.
(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)= ,d(∠xOy,B)= .
(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.
(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).
①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;
②在图4中,抛物线y=-x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.