期中备考九年级数学模拟测试冲刺版【人教版】2
下列计算错误的是( )
A.a2·a=a3 | B.(ab)2=a2b2 | C.(a2)3=a5 | D.-a+2a=a |
如图所示,∠A+∠B+∠C+∠D+∠E的结果为( )
A.90° | B.180° | C.360° | D.无法确定 |
方程(x-2)(x+3)=0的解是( )
A.x=2 | B.x=-3 |
C.=-2,=3 | D.=2,=-3 |
某中学为了让学生的跳远在中考体育测试中取得满意的成绩,在锻炼一个月后,学校对九年级一班的45名学生进行测试,成绩如下表:
这些运动员跳远成绩的中位数和众数分别是( )
A.190,200 | B.9,9 | C.15,9 | D.185,200 |
【原创题】无论k取何值,反比例函数的图象经过的象限是( )
A.第一、三象限 | B.第二、四象限 |
C.第一、二、三象限 | D.不能确定 |
如图,∠CAB=∠DBA,再添加一个条件,不一定能判△ABC≌△BAD的是( )
A.AC=BD | B.AD=BC | C.∠DAB =∠CBA | D.∠C=∠D |
如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是
【原创题】若关于的一元一次不等式组有解,则的取值范围是( )
A. | B. | C. | D. |
【原创题】如图,在Rt△ABC中,∠ACB=90°,BC:AC=5:7,那么sinA的值等于( )
A. | B. | C. | D. |
一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. | B. | C. | D. |
一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )
A.(4,0) | B.(5,0) | C.(0,5) | D.(5,5) |
【改编】如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D,BD=8,则__________.
如图,已知函数y1=2x-1和y2=x-3的图像交于点P(-2,-5),则根据图像可得不等式y1>y2的解集是 .
已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,则∠AFB= °.
【改编题】将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(2015,2)表示的实数是________.
一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.
(1)用树状图或列表法求出小颖参加比赛的概率;
(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.
如图,甲、乙两栋高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)
某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2 5元。老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元。
(1)问第二次购进了多少件文具?
(2)文具店老板第一次购进的文具有3% 的损耗,第二次购进的文具有5% 的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由。
如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.
(1)求证:△APQ∽△CDQ;
(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?
如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙0的切线;
(2)如果⊙0的半径为9,sin∠ADE=,求AE的长.
利达经销店为某工厂代销一种建筑材料.当每千克售价为260元时,月销售量为45千克.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每千克售价下降10元时,月销售量就会增加5千克.综合考虑各种因素,每售出一千克建筑材料共需支付厂家及其它费用100元.设每千克材料售价为x(元),该经销店的月利润为y(元).
(1)当每千克售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每千克多少元?