如果将点 P 绕定点 M 旋转 180 ∘ 后与点 Q 重合,那么称点 P 与点 Q 关于点 M 对称,定点 M 叫对称中心,此时,点 M 是线段 PQ 的中点,如图,在直角坐标系中, △ ABO 的顶点 A , B , O 的坐标分别为 1 , 0 , 0 , 1 , 0 , 0 ,点列 P 1 , P 2 , P 3 , ⋯ 中的相邻两点都关于 △ ABO 的一个顶点对称,点 P 1 与点 P 2 关于点 A 对称,点 P 2 与点 P 3 关于点 B 对称,点 P 3 与点 P 4 关于点 O 对称,点 P 4 与点 P 5 关于点 A 对称,点 P 5 与点 P 6 关于点 B 对称,点 P 6 与点 P 7 关于点 O 对称,…,对称中心分别是 A , B , O , A , B , O , ⋯ ,且这些对称中心依次循环,已知 P 1 的坐标为 1 , 1 ,试写出 P 2 , P 7 , P 100 , P 2021 的坐标.
试题篮