在 Rt △ ABC 中, ∠ BAC = 90 ∘ , AC = 2 AB ,点 D , P 分别是 AC , BC 的中点, △ ADE 是等腰三角形, ∠ AED = 90 ∘ ,连接 BE , EC .
(1)判断线段 BE 和 EC 的关系,并证明你的结论;
(2)连接 PA , PE ,过点 A 作 AM / / PE ,过点 E 作 EM / / PA , AM 和 EM 相交于点 M ,在图中先补充图形,再判断四边形 PAME 的形状,并证明你的结论.
试题篮