如图,在等腰直角三角形 ABC 中, ∠ ACB = 90 ∘ , AC = BC = 2 5 ,边长为2的正方形 DEFC 的对角线交点与点 C 重合,连接 AD , BE .
(1)求证: △ ACD ≅ △ BCE ;
(2)当点 D 在 △ ABC 内部,且 ∠ ADC = 90 ∘ 吋,设 AC 与 DG 相交于点 M ,求 AM 的长;
(3)将正方形 DEFG 绕点 C 旋转一周,当点 A , D , E 三点在同一直线上时,请直接写出 AD 的长.
试题篮