设 { a n } 和 { b n } 是两个等差数列,记 c n = max { b 1 ﹣ a 1 n , b 2 ﹣ a 2 n , … , b n ﹣ a n n } ( n = 1 , 2 , 3 , … ) ,其中 max { x 1 , x 2 , … , x s } 表示 x 1 , x 2 , , …, x s 这s个数中最大的数.
(1)若 a n = n , b n = 2 n ﹣ 1 ,求 c 1 , c 2 , c 3 的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数 M ,存在正整数 m ,当 n ≥ m 时, c n n > M ;或者存在正整数 m ,使得 c m , c m + 1 , c m + 2 , …是等差数列.
试题篮