已知数集 A = { a 1 , a 2 , ⋯ a n } ( 1 ≤ a 1 < a 2 < ⋯ a n , n ≥ 2 ) 具有性质 P ;对任意的 i , j ( 1 ≤ i ≤ j ≤ n ) , a i a j 与 a j a i 两数中至少有一个属于 A 。
(Ⅰ)分别判断数集 { 1 , 3 , 4 } 与 { 1 , 2 , 3 , 6 } 是否具有性质 P ,并说明理由;
(Ⅱ)证明: a 1 = 1 ,且 a 1 + a 2 + ⋯ + a n a 1 - 1 + a 2 - 1 + ⋯ + a n - 1 = a n ;
(Ⅲ)证明:当 n = 5 时, a 1 a 2 a 3 a 4 a 5 成等比数列。
试题篮