启教通信息平台
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:93

问题背景

如图1,在正方形 ABCD 的内部,作 DAE = ABF = BCG = CDH ,根据三角形全等的条件,易得 ΔDAE ΔABF ΔBCG ΔCDH ,从而得到四边形 EFGH 是正方形.

类比探究

如图2,在正 ΔABC 的内部,作 BAD = CBE = ACF AD BE CF 两两相交于 D E F 三点 ( D E F 三点不重合)

(1) ΔABD ΔBCE ΔCAF 是否全等?如果是,请选择其中一对进行证明.

(2) ΔDEF 是否为正三角形?请说明理由.

(3)进一步探究发现, ΔABD 的三边存在一定的等量关系,设 BD = a AD = b AB = c ,请探索 a b c 满足的等量关系.

登录并查看解析

问题背景如图1,在正方形ABCD的内部,作∠ DAE = ∠