启教通信息平台
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:计算题
  • 难度:较难
  • 人气:97

已知抛物线 y = a x 2 + bx + c ,其中 2 a = b > 0 > c ,且 a + b + c = 0

(1) 直接写出关于 x 的一元二次方程 a x 2 + bx + c = 0 的一个根;

(2) 证明: 抛物线 y = a x 2 + bx + c 的顶点 A 在第三象限;

(3) 直线 y = x + m x y 轴分别相交于 B C 两点, 与抛物线 y = a x 2 + bx + c 相交于 A D 两点 . 设抛物线 y = a x 2 + bx + c 的对称轴与 x 轴相交于 E . 如果在对称轴左侧的抛物线上存在点 F ,使得 ΔADF ΔBOC 相似, 并且 S ΔADF = 1 2 S ΔADE ,求此时抛物线的表达式 .

登录并查看解析

已知抛物线y = ax2+ bx + c,其中2 a = b