如图,抛物线 y = a x 2 − 2 x + c ( a ≠ 0 ) 与 x 轴、 y 轴分别交于点 A , B , C 三点,已知点 A ( − 2 , 0 ) ,点 C ( 0 , − 8 ) ,点 D 是抛物线的顶点.
(1)求抛物线的解析式及顶点 D 的坐标;
(2)如图1,抛物线的对称轴与 x 轴交于点 E ,第四象限的抛物线上有一点 P ,将 ΔEBP 沿直线 EP 折叠,使点 B 的对应点 B ' 落在抛物线的对称轴上,求点 P 的坐标;
(3)如图2,设 BC 交抛物线的对称轴于点 F ,作直线 CD ,点 M 是直线 CD 上的动点,点 N 是平面内一点,当以点 B , F , M , N 为顶点的四边形是菱形时,请直接写出点 M 的坐标.
试题篮