如图,四边形 OABC 是边长为4的正方形,点 P 为 OA 边上任意一点(与点 O 、 A 不重合),连接 CP ,过点 P 作 PM ⊥ CP 交 AB 于点 D ,且 PM = CP ,过点 M 作 MN / / AO ,交 BO 于点 N ,连接 ND 、 BM ,设 OP = t .
(1)求点 M 的坐标(用含 t 的代数式表示);
(2)试判断线段 MN 的长度是否随点 P 的位置的变化而改变?并说明理由.
(3)当 t 为何值时,四边形 BNDM 的面积最小;
(4)在 x 轴正半轴上存在点 Q ,使得 ΔQMN 是等腰三角形,请直接写出不少于4个符合条件的点 Q 的坐标(用含 t 的式子表示).
试题篮