如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H.(1)求点B的坐标;(2)设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;当t为何值时,△HBP的面积最大,并求出最大面积;(3)分别以P、H为圆心,PC、HB为半径作⊙P和⊙H,当两圆外切时,求此时t的值.
试题篮