重庆市万州区岩口复兴学校九年级3月月考数学试卷
下列调查,适合普查的调查方式是( )
A.对获甲型H7N9的禽流感患者同一车厢的乘客进行医学检查 |
B.了解全国手机用户对废手机的处理情况 |
C.了解全球人类男女比例情况 |
D.了解重庆市中小学生压岁钱的使用情况 |
如图,AP、BP分别切⊙O于点A、B,∠P=60°,点C是圆上一动点,则∠C度数为( )
A.60° C.40° D.72° D、60°或120°
如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=70°,则∠2的度数是( )
A.70° B.55° C.60° D.50°
如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为( )
A. | B.3 | C.5 | D. |
如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于( )
A.4 | B.5 | C.6 | D.7 |
下列图形都是由同样大小的圆按一定的规律组成,其中,第(1)个图形中一共有2个圆;第(2)个图形中一共有7个圆;第(3)个图形中一共有16个圆;第(4)个图形中一共有29个圆,…,则第(20)个图形中圆的个数为( )
A.781 | B.784 | C.787 | D.678 |
2013年4月20日08时02分在四川雅安芦山县发生7.0级地震,人民生命财产遭受重大损失.某部队接到上级命令,乘车前往灾区救援,前进一段路程后,由于道路受阻,车辆无法通行,通过短暂休整后决定步行前往.则能反映部队与灾区的距离(千米)与时间(小时)之间函数关系的大致图象是( )
A. B. C. D.
如图,直线与抛物线的图象都经过轴上的D点,抛物线与轴交于A、B两点,其对称轴为直线,且.直线与轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是( ).
①; ②; ③; ④; ⑤
A.1 B.2 C.3 D.4
地球到月球的距离约为380000公里,将数380000用科学记数法表示为________公里
重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是______.
如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为 (结果保留根号).
已知平面直角坐标系内A、B两点的坐标分别为A(0,0)和B(2,2),现有四张正面分别标有数字-2,0,2,4的不透明卡片,它们除了数字不同外其余全部相同.先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数记为x,将卡片放回后从中再取一张,将该卡片上的数字记为y,记P点的坐标为P(x,y),则以P、A、B三点所构成的三角形为等腰直角三角形的概率为______
如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数 (x>0)的图象交EF于点B,则点B的坐标为____________.
如图所示,△ABC在平面直角坐标系中,将△ABC向下平移5个单位得到△A1B1C1,再将△A1B1C1绕点o顺时针旋转90°得到△A2B2C2,请作出△A1B1C1和△A2B2C2;
重庆南滨路“餐饮一条街”旁的一个路口,交警队在某一段时间内对来往车辆的车速情况进行了统计,并制成了如下两幅不完整的统计图:
(1)这些车辆行驶速度的平均数为 ___________ ;请将该折线统计图补充完整;
(2)该路口限速60千米/时,经交警逐一排查,在超速的车辆中,车速为80千米/时的车辆中有2位驾驶员饮酒,车速为70千米/时的车辆中有1位驾驶员饮酒.若交警不是逐一排查,而是分别在车速为80千米/时和70千米/时的车辆中各随机拦下一位驾驶员询问,请你用列表法或画树状图的方法求出所选两辆车的驾驶员均饮酒的概率.
我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-投资成本)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?
如图,菱形ABCD中,点E,M在A,D上,且CD=CM,点F为AB上的点,且∠ECF=∠B
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积。
(2)求证:BF=EF-EM
己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧)点
A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
已知:矩形ABCD中,M为BC边上一点, AB=BM=10,MC=14,如图1,正方形EFGH的顶点E和点B重合,点F、G、H分别在边AB、AM、BC上.如图2,P为对角线AC上一动点,正方形EFGH从图1的位置出发,以每秒1个单位的速度沿BC向点C匀速移动;同时,点P从C点出发,以每秒1个单位的速度沿CA向点A匀速移动.当点F到达线段AC上时,正方形EFGH和点P同时停止运动.设运动时间为t秒,解答下列问题:
(1)在整个运动过程中,当点F落在线段AM上和点G落在线段AC上时,分别求出对应t的值;
(2)在整个运动过程中,设正方形与重叠部分面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在整个运动过程中,是否存在点P,使是以DG为腰的等腰三角形?若存在,求出t的值;若不存在,说明理由.