重庆市万州区岩口复兴学校九年级下学期期中命题四数学试卷
已知:如图,l1∥l2,∠1=50°, 则∠2的度数是 ( )
A.120° | B.50° | C.40° | D.130° |
如图所示的是某几何体的三视图,则该几何体的形状是 ( )
A.三棱锥 | B.正方体 | C.三棱柱 | D.长方体 |
下列事件是随机事件的是 ( )
A.购买一张福利彩票,中特等奖 |
B.在一个标准大气压下,将水加热到100℃,水沸腾 |
C.奥林匹克运动会上,一名运动员奔跑的速度是30米/秒 |
D.在一个只装着白球和黑球的袋中摸球,摸出一个红球 |
如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A = 70°,则∠BOC的度数为 ( )
A.100° B.110° C.120° D.130°
小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到,他加快了速度,以每分45米的速度行走完剩下的路程,那么小明行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是 ( )
下列图形都是由同样大小的“星星”按一定的规律组成,其中第1个图形有4个“星星”,第2个图形一共有7个“星星”,第3个图形一共有10个“星星”,……,则第7个图形中“星星”的个数为 ( )
A.19 | B.20 | C.22 | D.23 |
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有( )个。
A.2个 | B.3个 | C.4个 | D.5个 |
据中国电子商务研究中心统计,腾讯对“嘀嘀”打车的补贴和阿里巴巴对“快的”打车的补贴,合计约为1900000000元,这个数据用科学记数法表示为 .
为了中考“跳绳”项目能得到满分,小明练习了6次跳绳,每次跳绳的个数如下(单位:个):176, 183, 187,179,187,188.这6次数据的中位数是 .
小明动手做了一个质地均匀、六个面完全相同的正方体,,分别标有整数-2、-1、0、1、2、3,且每个面和它所相对的面的数字之和均相等,小明向上抛掷该正方体,落地后正方体正面朝上数字作为为点的横坐标,将它所对的面的数字作为点的纵坐标,则点落在抛物线与轴所围成的区域内(不含边界)的概率是 .
如图,ABCD的顶点A、B的坐标分别是A(-1,0)B(0,-2),顶点C、D在双曲线上,边AD交y轴于点E,且ABCD的面积是△ABE面积的8倍,则k= .
作图题:如图,△ABC在平面直角坐标系中,每个小正方形的边长均为1,其中点A、B、C的位置分别如图所示.(不要求写作法)
(1)作出△ABC上平移3个单位得到的△A1B1C1,其中点A、B、C的对应点分别为点A1、B1、C1.
(2)作出△ABC关于直线对称的△A2 B2C2,其中点A、B、C的对应点分别为点A2、B2、C2,并写出点A2的坐标.
每年3月12日,是中国的植树节。某街道办事处为进一步改善人居环境,准备在街道两边植种行道树,行道树的树种选择取决于居民的喜爱情况.为此,街道办事处的人员随机调查了部分居民,并将结果绘制成如下扇形统计图,其中∠AOB = 126°.
请根据扇形统计图,完成下列问题:
(1)本次调查了多少名居民?其中喜爱香樟的居民有多少人?
(2)请将条形统计图补全(在图中完成).
(3)某中学的一些同学也参与了投票,喜爱“小叶榕”的有四人,其中一名男生;喜爱“黄葛树”的也有四人,其中三名男生.若街道准备分别从这两组中随机选出一名同学参与到街道植树活动中去.请你用列表或画树状图的方法求出所选两名同学恰好是一名女生和一名男生的概率.
随着城市雾霾的日益严重,人民越来越重视空气质量和呼吸防护.为了确保员工的身心健康,某供电公司决定向户外工作的员工发放防PM2.5粉尘口罩,应对持续的雾霾天气.经统计,供电公司第一批急需600只口罩.经过A、B、C三个纺织厂的竞标得知,A、B两厂的工作效率相同,且都为C厂的2倍.若由一个纺织厂单独完成,C厂比A 厂要多用10天.供电公司决定由三个纺织厂同时纺织,要求至多6天完成纺织工作.三个纺织厂都按原来的工作效率纺织2天时,供电公司提出急需第二批口罩360只,为了不超过6天时限,纺织厂决定从第3天开始,各自都提高工作效率,A、B厂提高的工作效率仍然都是C厂提高的2倍,这样他们至少还需要3天才能成整个纺织工作.
⑴求A厂原来平均每天纺织口罩的只数;
⑵求A厂提高工作效率后平均每天多纺织口罩的只数的取值范围.
如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠CEF=75°,CF=,求△AEF的面积.
如图,直线与x轴,y轴分别相交于点B,点C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴是直线.
(1)求A点的坐标及该抛物线的函数表达式;
(2)求出∆PBC的面积;
(3)请问在对称轴右侧的抛物线上是否存在点Q,使得以点A、B、C、Q所围成的四边形面积是∆PBC的面积的?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图1,梯形中,∥,,.一个动点从点出发,以每秒个单位长度的速度沿线段方向运动,过点作,交折线段于点,以为边向右作正方形,点在射线上,当点到达点时,运动结束.设点的运动时间为秒().
(1)当正方形的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设正方形与△的重合部分面积为,请直接写出与之间的函数关系式和相应的自变量的取值范围;
(3)如图2,当点在线段上运动时,线段与对角线交于点,将△沿翻折,得到△,连接.是否存在这样的,使△是等腰三角形?若存在,求出对应的的值;若不存在,请说明理由.