浙江乐清育英寄宿学校九年级上学期期末考试数学试卷
抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是( ).
A.(0.5,0) | B.(1,0) | C.(2,0) | D.(3,0) |
如图,⊙O的半径OB和弦AC相交于点D,∠AOB=90°,则下列结论错误的是( ).
A.∠C="45°" | B.∠OAB=45° | C.OB∶AB=1∶ | D.∠ABC=4∠CAB |
某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答.在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是( ) .
A. | B. | C. | D. |
四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为,那么的值( ).
A. | B. | C. | D. |
如图,函数y=-kx(k与的图象交于A、B两点,过A作AC轴于C,则BOC的面积是( ).
A.8 B .4 C. 2 D.1
如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的上时,的长度等于( ).
A. B. C. D.
如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为( ).
A.6 | B.8 | C.10 | D.12 |
如图:点P(x,y)为平面直角坐标系内一点,PB⊥x 轴,垂足为B, A为(0,2),若PA=PB,则以下结论正确的是( ).
A.点P在直线上 | B.点P在抛物线上 |
C.点P在抛物线上 | D.点P在抛物线上 |
如图,四个正六边形的面积都是6,则图中△ABC的面积等于( ).
A.12 | B.13 | C.14 | D.15 |
若干桶方便面摆放在桌子上,如图是它的三视图,则这一堆方便面共有 _____ 桶.
如图,AC、BC是两个半圆的直径,∠ACP=30°,若AB=10cm,则PQ的值为__________.
如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A,则O1A的长为___ .
已知点P是边长为4的正方形ABCD内一点,且PB="3" , BF⊥BP,垂足是点B, 若在射线BF上找一点M,使以点B, M, C为顶点的三角形与△ABP相似,则BM为___________.
如图,点O在Rt△ABC的斜边AB上,⊙O切AC边于点E,切BC边于点D,连结OE,如果由线段CD、CE及劣弧ED围成的图形(阴影部分)面积与△AOE的面积相等,那么的值为 ____ .
把一个三角形分割成几个小正三角形,有两种简单的“基本分割法”.
基本分割法1:如图①,把一个正三角形分割成4个小正三角形,即在原来1个正三角形的基础上增加了3个正三角形.
基本分割法2:如图②,把一个正三角形分割成6个小正三角形,即在原来1个正三角形的基础上增加了5个正三角形.
请你运用上述两种“基本分割法”,解决下列问题:
(1)把图③的正三角形分割成9个小正三角形;
(2)把图④的正三角形分割成10个小正三角形;
(3)把图⑤的正三角形分割成11个小正三角形;
(4)把图⑥的正三角形分割成12个小正三角形.
已知反比例函数y=(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30°方向,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时20海里.
求A、D两点间的距离.
如图,是的内接三角形,,为 中上一点,延长至点,使.
(1)求证:;
(2)若,求证:.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)