2011年初中毕业升学考试(青海西宁卷)数学
福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为( )
A.0.18×106米 | B.1.8×106米 |
C.1.8×105米 | D.18×104米 |
一元二次方程x(x﹣2)=0根的情况是( )
A.有两个不相等的实数根 | B.有两个相等的实数根 |
C.只有一个实数根 | D.没有实数根 |
从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是( )
A.0 | B. |
C. | D.1 |
如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足( )
A. | B.R=3r |
C.R=2r | D. |
如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是( )
A、2 B、3
C、4 D、5
已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是( ).
以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是 .
(1)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.
(2)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为 度;
(2)图2、3中的a= ,b= ;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而 (填“增大”或“减小”).
如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称.
(1)求A、B两点坐标,并证明点A在直线l上;
(2)求二次函数解析式;
(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.
已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( )
A.3.84×104千米 | B.3.84×105千米 | C.3.84×106千米 | D.38.4×104千米 |
如图,己知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C的度数是( )
A.100° | B.110° | C.120° | D.150° |
我市某一周的最高气温统计如下表:
最高气温(℃) |
25 |
26 |
27 |
28 |
天 数 |
1 |
1 |
2 |
3 |
则这组数据的中位数与众数分别是( )
A.27,28 | B.27.5,28 | C.28,27 | D.26.5,27 |
如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
(11·西宁)《国家中长期教育改革和发展规划纲要(2010—2020)》征求意见稿提出“财政性教育经费支出占国内生产总值比例不低于4%”,2010年我国全年国内生产总值为397983亿元.397983亿元的4%,也就是约人民币15900亿元.将15900用科学记数法表示应为
A.159×102 | B.15.9×103 | C.1.59×104 | D.1.59×103 |
(11·西宁)已知⊙O1、⊙O2的半径分别是r1=2、r2=4,若两圆相交,则圆心距O1O2可能取的值是
A.1 | B.2 | C.4 | D.6 |
(11·西宁)如图1,△DEF经过怎样的平移得到△ABC
A.把△DEF向左平移4个单位,再向下平移2个单位 |
B.把△DEF向右平移4个单位,再向下平移2个单位 |
C.把△DEF向右平移4个单位,再向上平移2个单位 |
D.把△DEF向左平移4个单位,再向上平移2个单位 |
(11·西宁)某水坝的坡度i=1:,坡长AB=20米,则坝的高度为
A.10米 | B.20米 | C.40米 | D.20米 |
(11·西宁)西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图3所示的坐标系中,这个喷泉的函数关系式是
A.y=-(x-)x2+3 | B.y=-3(x+)x2+3 |
C.y=-12(x-)x2+3 | D.y=-12(x+)x2+3 |
(11·西宁)用直尺和圆规作一个菱形,如图4,能得到四边形ABCD是菱形的依据是
A.一组邻边相等的四边形是菱形 | B.四边都相等的四边形是菱形 |
C.对角线互相垂直的平行四边形是菱形 | D.每条对角线平分一组对角的平行四边形是菱形 |
(11·西宁)如图6,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°,BD=3,CE=2,则△ABC的边长为
A.9 | B.12 | C.16 | D.18 |
(11·西宁)如表1给出了直线l1上部分点(x,y)的坐标值,表2给出了直线l2上部分点(x,y)的坐标值.那么直线l1和l2直线交点坐标为_ ▲ .
(11·西宁)如图7,将直角三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=_ ▲ .
(11·西宁)如图8,在6×6的方格纸中(共有36个小方格),每个小方格都是边长为1的正方形,将线段OA绕点O逆时针旋转得到线段OB(顶点均在格点上),则阴影部分面积等于_ ▲ .
如图10,在
中,
、
是互相垂直的两条弦,
于点
,
于点
,且
,
,那么
的半径
长为
(11·西宁)如图11,直线y=kx+b经过A(-1,1)和B(-,0)两点,则不等式0<kx+b<-x的解集为_ ▲ .
(11·西宁)(本小题满分7分)给出三个整式a2,b2和2ab.
(1)当a=3,b=4时,求a2+b2+2ab的值;
(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写也你所选的式子及因式分解的过程.
11·西宁)(本小题满分8分)如图12 ,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2).若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,
其余条件不变,则四边形AODE是_ ▲ .
(11·西宁)(本小题满分8分)国家教育部规定“中小学生每天在校体育活动时间不少于1小时”.西宁市某中学为了了解学生体育活动的情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分.
根据以上信息,解答下列问题:
(1)随机抽查的学生中每天在校锻炼时间超过1小时的人数是_ ▲ ;
(2)请将图14补充完整;
(3)2011年我市初中应届毕业生约为11000人,请你估计今年全市初中应届毕业生中每天锻炼时间超过1小时的学生约有多少人?
(11·西宁)(本小题满分8分)如图15,阅读对话,解答问题.
盒子中有三个除数字外完全相同的小球—1,1,2.
小兵:我蒙上眼睛,先从盒子中摸出一个小球(摸出后不放回),用P表示我摸出小球上标有的数字.
小红:你摸出后,我也蒙上眼睛,再从盒子中摸出一个小球,用Q表示我摸出小球上标有的数字.
(1)试用树形图或列表法写出满足关于x的方程x2+px+q=0的所有等可能结果;
(2)求(1)中方程有实数根的概率.
(11·西宁)(本小题满分10分)已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4.
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使BF=OB,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
(11·西宁)(本小题满分10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?