[浙江]2013届浙江省宁波市五校九年级3月联考数学试卷
一个不透明口袋中装着只有颜色不同的2个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为
A. | B. | C. | D.1 |
2012年度,北仑港港口的吞吐量比上一年度增加31 000 000吨,创年度增量的最高纪录,其中数据“31000000”用科学记数法表示为
A.3.1×106 | B.3.1×107 | C.31×106 | D.0.31×108 |
欣赏著名作家巴金在他的作品《海上日出》中对日出状况的描写:“果然过了一会儿,在那个地方出现了太阳的小半边脸,红是真红,却没有亮光”.这段文字中,给我们呈现是直线与圆的哪一种位置关系
A.相切 | B.相离 | C.外切 | D.相交 |
长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是
A.12cm2 | B.8cm2 | C.6cm2 | D.4cm2 |
如图,AB是半圆O的直径,点P从点O出发,沿OA—弧AB—BO的路径运动一周.设为S,运动时间为t,则下列图形能大致地刻画s与t之间关系的是
如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为( )
A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1
如图,若弧AB半径PA为18,圆心角为120°,半径为2的⊙,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙自转的周数是
A.5周 | B.6周 | C.7周 | D.8周 |
对某校九年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是 分.
若圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°,则其侧面积为 (结果用含π的式子表示).
如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k值为 .
如图,E为□ABCD中DC边延长线上的一点,且CE=CD,连接AE,分别交BC、BD于点F、G.
(1)求证:△AFB≌△EFC;
(2)若BDD=12厘米,求DG的长.
如图,已知A、B两点的坐标分别为A(0,2),B(2,0)直线AB与反比例函数y=的图象交与点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数.
下面提供某市楼市近期的两幅业务图:图(甲)所示为2012年6月至12月该市商品房平均成交价格的走势图(单位:万元/平方米);图(乙)所示为2012年12月该市商品房成交价格段比例分布图(其中为每平方米商品房成交价格,单位:万元/平方米).
(1)根据图(甲),写出2012年6月至2012年12月该市商品房平均成交价格的中位数;
(2)根据图(乙),可知x= ;
(3)2012年12月从该市的四个不同地段中的每个地段的在售楼盘中随机抽出两个进行分析:共有可售商品房2400套,其中成交200套.请估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万元的商品房的套数.
如图为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D = 56°,求:(1)弧AB的度数(参考数据:sin53°≈0.8,tan56°≈1.5)
(2)U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)
某航空公司经营A、B、C、D四个城市之间的客运业务. 若机票价格y(元)是两城市间的距离x(千米)的一次函数. 今年“五、一”期间部分机票价格如下表所示:
(1)求该公司机票价格y(元)与距离x(千米)的函数关系式;
(2)利用(1)中的关系式将表格填完整;
(3)判断A、B、C、D这四个城市中,哪三个城市在同一条直线上?请说明理由;
(4)若航空公司准备从旅游旺季的7月开始增开从B市直接飞到D市的旅游专线,且按以上规律给机票定价,那么机票定价应是多少元?
在平面直角坐标系xOy中,如图,将若干个边长为的正方形并排组成矩形OABC,相邻两边OA、OC分别落在y轴的正半轴和x轴的负半轴上,将这些正方形顺时针绕点O旋转135°得到相应矩形OA′B′C′,二次函数y=ax2+bx(a≠0)过点O、B′、C′.
(1)如图,当正方形个数为1时,填空:点B′坐标为 ,点C′坐标为 ,二次函数的关系式为 ,此时抛物线的对称轴方程为 ;
(2)如图,当正方形个数为2时,求y=ax2+bx+c(a≠0)图像的对称轴;
(3)当正方形个数为2013时,求y=ax2+bx+c(a≠0)图像的对称轴;
(4)当正方形个数为n个时,请直接写出:用含n的代数式来表示y=ax2+bx+c(a≠0)图像的对称轴。