[上海]2012年初中毕业升学考试(上海卷)数学
在下列图形中,为中心对称图形的是【 】
A.等腰梯形 | B.平行四边形 | C.正五边形 | D.等腰三角形 |
如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是【 】
A.外离 | B.相切 | C.相交 | D.内含 |
布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 .
某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表的信息,可测得测试分数在80~90分数段的学生有 名.
在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCDE的面积为5,那么AB的长为 .
我们把两个三角形的中心之间的距离叫做重心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,重心距为2,那么当它们的一对角成对顶角时,重心距为 .
如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为 .
如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=.
(1)求线段CD的长;
(2)求sin∠DBE的值.
某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.
(注:总成本=每吨的成本×生产数量)
己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.
(1)求证:BE=DF;
(2)当时,求证:四边形BEFG是平行四边形.
如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当∠ECA=∠OAC时,求t的值.
(图文不相符)