2020年全国统一高考数学试卷(新高考全国Ⅰ卷)
设集合 A={ x|1≤ x≤3}, B={ x|2< x<4},则 A∪ B=( )
A. |
{x|2<x≤3} |
B. |
{x|2≤x≤3} |
C. |
{x|1≤x<4} |
D. |
{x|1<x<4} |
6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A. |
120种 |
B. |
90种 |
C. |
60种 |
D. |
30种 |
日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为 O),地球上一点 A的纬度是指 OA与地球赤道所在平面所成角,点 A处的水平面是指过点 A且与 OA垂直的平面.在点 A处放置一个日晷,若晷面与赤道所在平面平行,点 A处的纬度为北纬40°,则晷针与点 A处的水平面所成角为( )
A. |
20° |
B. |
40° |
C. |
50° |
D. |
90° |
某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A. |
62% |
B. |
56% |
C. |
46% |
D. |
42% |
基本再生数 R 0与世代间隔 T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型: 描述累计感染病例数 I( t)随时间 t(单位:天)的变化规律,指数增长率 r与 R 0, T近似满足 R 0=1+ rT.有学者基于已有数据估计出 R 0=3.28, T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )
A. |
1.2天 |
B. |
1.8天 |
C. |
2.5天 |
D. |
3.5天 |
已知 P是边长为2的正六边形 ABCDEF内的一点,则 的取值范用是( )
A. |
|
B. |
|
C. |
|
D. |
若定义在 的奇函数 f( x)在 单调递减,且 f(2)=0,则满足 的 x的取值范围是( )
A. |
|
B. |
|
C. |
|
D. |
|
已知曲线 .( )
A. |
若m>n>0,则C是椭圆,其焦点在y轴上 |
B. |
若m=n>0,则C是圆,其半径为 |
C. |
若mn<0,则C是双曲线,其渐近线方程为 |
D. |
若m=0,n>0,则C是两条直线 |
下图是函数 y= sin( ωx+ φ)的部分图像,则sin( ωx+ φ)= ( )
A. |
|
B. |
|
C. |
|
D. |
|
信息熵是信息论中的一个重要概念.设随机变量 X所有可能的取值为 ,且 ,定义 X的信息熵 .( )
A. |
若n=1,则H(X)=0 |
B. |
若n=2,则H(X)随着 的增大而增大 |
C. |
若 ,则H(X)随着n的增大而增大 |
D. |
若n=2m,随机变量Y所有可能的取值为 ,且 ,则H(X)≤H(Y) |
斜率为 的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则 =________.
将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
某中学开展劳动实习,学生加工制作零件,零件的截面如图所示. O为圆孔及轮廓圆弧 AB所在圆的圆心, A是圆弧 AB与直线 AG的切点, B是圆弧 AB与直线 BC的切点,四边形 DEFG为矩形, BC⊥ DG,垂足为 C,tan∠ ODC= , , EF=12 cm, DE=2 cm, A到直线 DE和 EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm 2.
已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以 为球心, 为半径的球面与侧面BCC1B1的交线长为________.
在① ,② ,③ 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 的值;若问题中的三角形不存在,说明理由.
问题:是否存在 ,它的内角的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
已知公比大于 的等比数列 满足 .
(1)求 的通项公式;
(2)记 为 在区间 中的项的个数,求数列 的前 项和 .
为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了 天空气中的 和 浓度(单位: ),得下表:
|
|
|
|
|
32 |
18 |
4 |
|
6 |
8 |
12 |
|
3 |
7 |
10 |
(1)估计事件"该市一天空气中 浓度不超过 ,且 浓度不超过 "的概率;
(2)根据所给数据,完成下面的 列联表:
|
|
|
|
||
|
(3)根据(2)中的列联表,判断是否有 的把握认为该市一天空气中 浓度与 浓度有关?
附: ,
|
0.050 |
0.010 |
0.001 |
K |
3.841 |
6.635 |
10.828 |
如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l.
(1)证明: l⊥平面 PDC;
(2)已知 PD= AD=1, Q为 l上的点,求 PB与平面 QCD所成角的正弦值的最大值.
已知函数 .
(1)当 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;
(2)若f(x)≥1,求a的取值范围.