2020年山东省临沂市中考数学试卷
如图,数轴上点 对应的数是 ,将点 沿数轴向左移动2个单位至点 ,则点 对应的数是
A. B. C. D.
从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是
A. B. C. D.
《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有 人, 辆车,可列方程组为
A. B.
C. D.
如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是
A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定
C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定
如图, 是面积为 的 内任意一点, 的面积为 , 的面积为 ,则
A. B.
C. D. 的大小与 点位置有关
如图,在 中, 为直径, .点 为弦 的中点,点 为 上任意一点.则 的大小可能是
A. B. C. D.
我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点 到以原点为圆心,以1为半径的圆的距离为 .
2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:
质量 |
组中值 |
频数(只 |
|
1.0 |
6 |
|
1.2 |
9 |
|
1.4 |
|
|
1.6 |
15 |
|
1.8 |
8 |
根据以上信息,解答下列问题:
(1)表中 ,补全频数分布直方图;
(2)这批鸡中质量不小于 的大约有多少只?
(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元 的价格售出这批鸡后,该村贫困户能否脱贫?
如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角 要满足 ,现有一架长 的梯子.
(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?
(2)当梯子底端距离墙面 时, 等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?
(参考数据: , , , , , .
已知蓄电池的电压为定值,使用蓄电池时,电流 (单位: 与电阻 (单位: 是反比例函数关系.当 时, .
(1)写出 关于 的函数解析式;
(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3)如果以此蓄电池为电源的用电器的限制电流不能超过 ,那么用电器可变电阻应控制在什么范围内?
已知 的半径为 , 的半径为 .以 为圆心,以 的长为半径画弧,再以线段 的中点 为圆心,以 的长为半径画弧,两弧交于点 ,连接 , , 交 于点 ,过点 作 的平行线 交 于点 .
(1)求证: 是 的切线;
(2)若 , , ,求阴影部分的面积.
已知抛物线 .
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在 轴上,求其解析式;
(3)设点 , 在抛物线上,若 ,求 的取值范围.