四川省绵阳市三台县九年级上学期12月调研数学试卷
下列方程为一元二次方程的是( )
A.x+=1 | B.ax2+bx+c=0 | C.x(x﹣1)=x | D.x+ |
一元二次方程x2=x的解为( )
A.x=1 | B.x=0 | C.x1=1,x2=2 | D.x1=0,x2=1 |
抛物线y=ax2+4ax﹣5的对称轴为( )
A.x=﹣2a | B.x=4 | C.x=2a | D.x=﹣2 |
下列几何图形中,既是轴对称图形,又是中心对称图形的是( )
A.线段 | B.等边三角形 | C.平行四边形 | D.正五边形 |
如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( )
A.80° | B.100° | C.110° | D.130° |
如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA( )
A.顺时针旋转90° B.顺时针旋转45°
C.逆时针旋转90° D.逆时针旋转45°
设同一个圆的内接正六边形、正八边形、正十二边形的边心距分别为r6,r8,r12,则r6,r8,r12的大小关系为( )
A.r6>r8>r12 | B.r6<r8<r12 | C.r8>r6>r12 | D.不能确定 |
已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是( )
A.没有实数根 |
B.有两个相等的实数根 |
C.有两个不相等的实数根 |
D.无法确定 |
已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是( )
A.y1≥y2 | B.y1>y2 | C.y1<y2 | D.y1≤y2 |
如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是( )
A. | B.4.75 | C.5 | D.4.8 |
如图,点A、B的坐标分别为(1,2),(3,),现将线段AB绕点B顺时针旋转180°得线段A1B,则A1的坐标为( )
A.(1,﹣5) B.(5,﹣2) C.(5,﹣1) D.(﹣1,5)
如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
如图,在扇形AOB中,∠AOB=90°,弧AB的长为2π,则扇形AOB的面积为 .
如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是+1 .
对于抛物线y=ax2+bx+c(a≠0),有下列说法:
①当b=a+c时,则抛物线y=ax2+bx+c一定经过一个定点(﹣1,0);
②若△=b2﹣4ac>0,则抛物线y=cx2+bx+a与x轴必有两个不同的交点;
③若b=2a+3c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;
④若a>0,b>a+c,则抛物线y=ax2+bx+c与x轴必有两个不同的交点;
其中正确的有 .
计算:
(1)用公式法解方程:x2+3x﹣2=0
(2)已知a2+a=0,请求出代数式()的值.
如图,已知抛物线y=﹣ax2+2ax+3a(a≠0)与x轴交于A、B两点,与y轴交于点C.
(1)请直接写出A、B两点的坐标.
(2)当a=,设直线AC与抛物线的对称轴交于点P,请求出△ABP的面积.
已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求证:方程总有两个不相等的实数根.
(2)设方程的两根为x1,x2(x1<x2),则当0≤p时,请直接写出x1和x2的取值范围.
在Rt△ABC中,∠ACB=90°,现将Rt△ABC绕点C逆时针旋转90°,得到Rt△DEC(如图①)
(1)请判断ED与AB的位置关系,并说明理由.
(2)如图②,将Rt△DEC沿CB方向向右平移,且使点D恰好落在AB边上,记平移后的三角形为Rt△DEF,连接AE、DC,求证:∠ACD=∠AED.
为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.
(1)当AD=2,BC=8时,连接OC、OD、CD.
①求△COD的面积.
②试判断直线CD与☉O的位置关系,并说明理由.
(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.