湖南省衡阳市龙门学校九年级上学期第一次月考数学试卷
2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )
A.3.84×104千米 | B.3.84×105千米 |
C.3.84×106千米 | D.38.4×104千米 |
将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x﹣1)2+2 |
B.y=(x+1)2+2 |
C.y=(x﹣1)2﹣2 |
D.y=(x+1)2﹣2 |
下列四个图形中,既是轴对称图形,又是中心对称图形的是( )
A.①② | B.①③ | C.②③ | D.①②③ |
一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )
A. | B. | C. | D. |
如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为( )
A.6.5米 | B.9米 | C.13米 | D.15米 |
某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶.游客爬山所用时间t与山高h间的函数关系用图形表示是( )
A. | B. |
C. | D. |
已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为( )
A.100cm | B.cm | C.10cm | D.cm |
已知反比例函数的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是( )
A.有两个不等实根 |
B.有两个相等实根 |
C.没有实根 |
D.无法确定 |
已知x1、x2是方程x2+6x+3=0的两个实数根,则的值等于( )
A.﹣6 | B.6 | C.10 | D.﹣10 |
把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是 .
某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是:30,34,32,37,28,31.那么,请你估计该小区6月份(30天)的总用水量约是 吨.
已知正比例函数y1=x,反比例函数,由y1,y2构造一个新函数y=x+其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:
①该函数的图象是中心对称图形;
②当x<0时,该函数在x=﹣1时取得最大值﹣2;
③y的值不可能为1;
④在每个象限内,函数值y随自变量x的增大而增大.
其中正确的命题是 .(请写出所有正确的命题的序号)
(1)计算:|﹣|﹣(﹣4)﹣1+()0﹣2cos30°
(2)先化简,再求值,(﹣)÷,其中a=+1.
国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
(1)请将两幅统计图补充完整;
(2)在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人;
(3)根据统计结果,请你简单谈谈自己的看法.
如图,平行四边形ABCD中,AE:EB=1:2,求△AEF与△CDF的周长的比.如果S△AEF=6cm2,
求S△CDF.
如图,某电信公司计划修建一条连接B、C两地的电缆.测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B处测得C地的仰角为60°,已知C地比A地高200m,求电缆BC的长.(结果可保留根号)
已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
求证:(1)BC平分∠PBD;
(2)BC2=AB•BD.
某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?
如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC.
(1)求这个扇形的面积;
(2)若将扇形BAC围成一个圆锥的侧面,这个圆锥的底面直径是多少?能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.