江苏省盐城东台创新学校八年级上第二次月考数学卷
我国重要银行的商标设计都融入了中国古代钱币的图案,下列我国四大银行的商标图案不是轴对称图形的是( )
A. | B. | C. | D. |
下列点中,位于直角坐标系第二象限的点是( )
A.(2,1) | B.(-2,-1) | C.(-2,1) | D.(2,-1) |
到△ABC三个顶点距离相等的点是△ABC的( )
A.三条角平分线的交点 | B.三条中线的交点 |
C.三条高的交点 | D.三条垂直平分线的交点 |
在平面直角坐标系中,已知A(2,2),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )
A.2个 | B.3个 | C.4个 | D.5个 |
如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移3个单位
B.△ABC绕点C顺时针旋转90°,再向下平移1个单位
C.△ABC绕点C逆时针旋转90°,再向下平移1个单位
D.△ABC绕点C逆时针旋转90°,再向下平移3个单位
如图,是象棋盘的一部分.若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( )上.
A.(-1,1) | B.(-1,2) | C.(-2,1) | D.(-2,2) |
在平面直角坐标系中,P点关于原点的对称点为P1(-3,-),P点关于x轴的对称点为P2(a,b),则=( )
A.-2 | B.2 | C.4 | D.-4 |
在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点…则边长为8的正方形内部的整点的个数为( )
A.64个 | B.49个 | C.36个 | D.25个 |
在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为 .
如图,已知:AD平分∠BAC,AC=AB+BD,∠B=56°,则∠C= .
如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .
如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为 .
如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是 cm.
计算题
(1)(-2)3×+(-1)2003-;
(2)|-1|+(-2)2+(7-π)0-()-1.
利用网格线画图:如图,点A、B、C都在正方形网格的格点上.
(1)在BC上找一点P,使PA=PB;
(2)在BC上找一点Q,使点Q到AB和AC的距离相等.
如图,已知∠AOB=30°,P为其内部一点,OP=3,M、N分别为OA、OB边上的一点,要使△PMN的周长最小,请给出确定点M、N位置的方法,并求出最小周长.
在同一直角坐标系中分别描出点A(-3,0)、B(2,0)、C(1,3),再用线段将这三点首尾顺次连接起来,求△ABC的面积与周长.
如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
如图,在直角坐标系中,B点的坐标为(a,b),且a、b满足.
(1)求B点的坐标;
(2)点A为y轴上一动点,过B点作BC⊥AB交x轴正半轴于点C,求证:BA=BC.