山东省日照市五莲县九年级上学期期中考试数学试卷
平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是( )
A.(3,-2) | B.(2,3) | C.(-2,-3) | D.(2,-3) |
如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A.120° | B.90° | C.60° | D.30° |
下列命题中假命题的个数是( )
①三点确定一个圆;
②三角形的内心到三边的距离相等;
③相等的圆周角所对的弧相等;
④平分弦的直径垂直于弦;
⑤垂直于半径的直线是圆的切线.
A.4 | B.3 | C.2 | D.1 |
如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=( )
A.160° | B.100° | C.80° | D.20° |
已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是( )
A.有最小值-5、最大值0 |
B.有最小值-3、最大值6 |
C.有最小值0、最大值6 |
D.有最小值2、最大值6 |
为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2若每年的年增长率相同,则年增长率为( )
A.9% | B.10% | C.11% | D.12% |
已知抛物线y=ax2+bx+c的图象如图所示,那么下列四个结论:1)a+b+c<0;2)a-b+c<0;3)ac>0;4)b+2a>0.正确的个数是( )
A.1个 | B.2个 | C.3个 | D.4个 |
若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为( )
A.20厘米 | B.19.5厘米 | C.14.5厘米 | D.10厘米 |
二次函数y=2x2+mx+8的图象如图所示,则m的值是( )
A.-8 | B.8 | C.±8 | D.6 |
在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是( )
某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m.
如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若OA=a,PM=,那么△PMB的周长是 .
如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,已知∠P=50°,则∠ACB= 度.
解下列一元二次方程.
(1)x2-5x+1=0;
(2)3(x-2)2=x(x-2).
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.
如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C′′顺时针旋转90°,得到△A′′B′′C′′,请你画出△A′′B′′C′′和△A′′B′′C′′(不要求写画法).
某商场将每件进价为80元的某种商品原来按每件100元出售,每天可售出100件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经过市场调查,发现这种商品售价每降低1元,商场销售量平均每天可增加10件,若商场经营该商品一天要获利润2160元,且让顾客得到实惠,则每件商品应降价多少元?
如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.