吉林省通化市集安市七年级下学期期末数学试卷
有理数3.645精确到百分位的近似数为( )
A.3.6 | B.3.64 | C.3.7 | D.3.65 |
若单项式﹣3b与b是同类项,则常数m的值为( )
A.﹣3 | B.4 | C.3 | D.2 |
下列四个式子中,是一元一次方程的是( )
A.2x﹣6 | B.x﹣1="0" | C.2x+y="25" | D.=1 |
把一副三角板按照如图所示的位置摆放,则形成两个角,设分别为∠α、∠β,若已知∠α=65°,则∠β=( )
A.15° | B.25° | C.35° | D.45° |
点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC= cm.
写出一个满足下列条件的一元一次方程:①所含未知数的系数是﹣1,②方程的解3.则这样的方程可写为 .
如图,小明上学从家里A到学校B有①、②、③三条路线可走,小明一般情况下都是走②号路线,用几何知识解释其道理应是 .
某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x小时,完成了任务.根据题意,可列方程为 .
一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.
(1)通过计算说明小虫是否回到起点P.
(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.
化简求值:3y﹣[2y﹣3(2xy﹣y)﹣xy],其中x=﹣1,y=﹣2.
定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.
(1)求(﹣2)※3的值;
(2)若3※x=5※(x﹣1),求x的值.
如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.
用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?
如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.
(1)写出图中互补的角;
(2)求∠DOE的度数.
龙马潭公园门票价格如下:
购票张数 1﹣50张 51﹣100张 100张以上
每张票价 10元 8元 6元
七年级2个班共100人计划本周末去公园游玩.已知“七•一”班40多人、不足50人,两个年级各自以班为单位去购票,应付890元.
(1)两个班各多少人?
(2)两个班作为一个团体购票,最多能省多少钱?
(3)若“七•一”班单独去,应该怎样购票才最省钱?
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数 ,点P表示的数 (用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.