河北省承德市滦平县中考二模数学试卷
“神威1”计算机的计算速度为每秒384 000 000 000次,这个速度用科学记数法表示为每秒( )
A.3.84×1011次 | B.3.84×1010次 | C.38.4×1010次 | D.3.84×109次 |
下列四个图形中,既是轴对称图形,又是中心对称图形是( )
A.(1)(2) | B.(1)(3) | C.(1)(4) | D.(2)(3) |
袋中有4个除颜色外其余都相同的小球,其中1个红色,1个黑色,2个白色.现随机从袋中摸取两个球,则摸出的球都是白色的概率为( )
A. | B. | C. | D. |
一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是( )
A.120元 | B.100元 | C.72元 | D.50元 |
有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为( )
A.45° | B.60° | C.90° | D.135° |
用配方法解一元二次方程x2+4x-5=0,此方程可变形为( )
A.(x+2)2="9" | B.(x-2)2="9" | C.(x+2)2="1" | D.(x-2)2=1 |
在△ABC中,AD,BE是两条中线,则S△EDC:S△ABC=( )
A.1:2 | B.1:4 | C.1:3 | D.2:3 |
下列命题中,不正确的是( )
A.有一个角是60°的等腰三角形是等边三角形 |
B.对角线互相垂直且相等的四边形是矩形 |
C.一组对边平行且一组对角相等的四边形是平行四边形 |
D.对角线相等的菱形是正方形 |
如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A. | B.2 | C. | D.1 |
如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么( )秒钟后⊙P与直线CD相切.
A.4 B.8 C.4或6 D.4或8
已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:
①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,
则正确的结论是( )
A.①②③④ | B.②④⑤ | C.②③④ | D.①④⑤ |
在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xcm,则根据题意可得方程 .
如图,四边形A1B1C1O,A2B2C2C1,A3B3C3C2均为正方形.点A1,A2,A3和点C1,C2,C3分别在直线y=kx+b(k>0)和x轴上,点B3的坐标是(,),则k+b= .
小明同学在解一元二次方程时,他是这样做的:
(1)小明的解法从第 步开始出现错误;此题的正确结果是 .
(2)用因式分解法解方程:x(2x-1)=3(2x-1)
实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了 名同学,其中C类女生有 名,D类男生有 名;
(2)将条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,则所选两位同学恰好是一位男同学和一位女同学的概率是 .
如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
如图,将边长为8的正方形纸片ABCD折叠,使点B落在CD边的中点E上,压平后得到折痕MN,EF与AD边交于点G.
(1)求CN的长;
(2)求DG的长;
(3)AM= .(直接填结果)
如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.
(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.