2015年初中毕业升学考试(黑龙江牡丹江卷)数学
下列计算正确的是( ).
A.2a•3b="5ab" | B.a3•a4=a12 | C.(﹣3a2b)2=6a4b2 | D.a5÷a3+a2=2a2 |
抛物线y=3x2+2x﹣1向上平移4个单位长度后的函数解析式为( ).
A.y=3x2+2x﹣5 | B.y=3x2+2x﹣4 |
C.y=3x2+2x+3 | D.y=3x2+2x+4 |
学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( ).
A. | B. | C. | D. |
在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是( ).
A. | B. | C. | D. |
如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于( ).
A.32° | B.38° | C.52° | D.66° |
在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是( ).
A. | B. | C. | D. |
在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为( ).
A.7 | B.8 | C.8或17 | D.7或17 |
如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:
(1)∠DBM=∠CDE;
(2)S△BDE<S四边形BMFE;
(3)CD•EN=BN•BD;
(4)AC=2DF.
其中正确结论的个数是( ).
A.1 | B.2 | C.3 | D.4 |
位于我国东海的台湾岛是我国第一大岛,面积约36000平方千米,数36000用科学记数法表示为 .
如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件 (只添一个即可),使四边形ABCD是平行四边形.
由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是 个.
某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为 元.
如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为 .
矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为 .
如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:
(1)求抛物线的解析式;
(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.
注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
在△ABC中,AB=AC=4,∠BAC=30°,以AC为一边作等边△ACD,连接BD.请画出图形,并直接写出△BCD的面积.
为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.
请根据以上信息解答下列问题:
(1)本次调查共收回多少张问卷?
(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是 度;
(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?
甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.
请结合图象信息解答下列问题:
(1)直接写出a的值,并求甲车的速度;
(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;
(3)乙车出发多少小时与甲车相距15千米?直接写出答案.
已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM= .
夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:
(1)求甲、乙两种空调每台的进价;
(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;
(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.