江苏省扬州市高邮市中考模拟数学试卷
将6.18×10-3化为小数的是( )
A.0.000618 | B.0.00618 | C.0.0618 | D.0.618 |
若反比例函数的图象经过点(-2,3),则该反比例函数图象一定经过点( )
A.(2,-3) | B.(-2,-3) | C.(2,3) | D.(-1,-6) |
校篮球队所买10双运动鞋的尺码统计如表:
尺码(cm) |
25 |
25.5 |
26 |
26.5 |
27 |
购买量(双) |
1 |
1 |
2 |
4 |
2 |
则这10双运动鞋尺码的众数和中位数分别为( )
A、4cm,26cm
B、4cm,26.5cm
C、26.5cm,26.5cm
D、26.5cm,26cm
如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=( )
A、25° B、30° C、35° D、45°
能说明命题“关于x的一元二次方程x2+mx+4=0,当m<-2时必有实数解”是假命题的一个反例为( )
A.m=-4 | B.m=-3 | C.m=-2 | D.m=4 |
我们定义一种变换§:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是 (4,2,3,4,2)时,经过变换§可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是( )
A.(1,2,1,2,2) | B.(2,2,2,3,3) |
C.(1,1,2,2,3) | D.(1,2,1,1,2) |
小军家的玩具店进了一箱除颜色外都相同的塑料球共1000个,小军将箱中的球搅匀后,随机摸出一个球记下颜色,放回箱中;搅匀后再随机摸出一个球记下颜色,放回箱中;…多次重复上述实验后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是 个.
刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年 岁.
已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x |
… |
-1 |
0 |
1 |
2 |
3 |
… |
y |
… |
-6 |
-1 |
2 |
3 |
2 |
… |
则当y<-1时,x的取值范围是 .
如图,已知△ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,∠ABC=54°,则∠BCA的度数为 °.
如图,已知正方形ABCD的顶点A、B在⊙O上,顶点C、D在⊙O内,将正方形ABCD绕点逆时针旋转,使点D落在⊙O上.若正方形ABCD的边长和⊙O的半径均为6cm,则点D运动的路径长为 cm.
我们定义:平面内两条直线l1、l2相交于点O(l1与l2不垂直),对于该平面内任意一点P,如果点P到直线l1、l2的距离分别为a、b,那么有序实数对(a,b)就叫做点P的“平面斜角坐标”.如果常数m、n都是正数,那么在平面内与“平面斜角坐标”(m,n)对应的点共有 个.
(1)计算:-32+(1-π)0+(-)-2;
(2)因式分解:3x2y-18xy2+27y3.
学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.
(1)学校采用的调查方式是 ;学校在各班随机选取了 名学生;
(2)补全统计图中的数据:羽毛球 人、乒乓球 人、其他 人、其他 %;
(3)该校共有1100名学生,请估计喜欢“篮球”的学生人数.
从南京站开往上海站的一辆和谐号动车,中途只停靠苏州站,甲、乙、丙3名互不相识的旅客同时从南京站上车.
(1)求甲、乙、丙三名旅客在同一个站下车的概率;
(2)求甲、乙、丙三名旅客中至少有一人在苏州站下车的概率.
.写出下列命题的已知、求证,并完成证明过程.
命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.
已知:如图, .
求证: .
证明:
(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4.
①求∠ABC的度数;
②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;
(2)如图2,已知▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.
(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;
(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.
(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;
(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.
如图,已知关于x的二次函数y=x2+mx的图象经过原点O,并且与x轴交于点A,对称轴为直线x=1.
(1)常数m= ,点A的坐标为 ;
(2)若关于x的一元二次方程x2+mx=n(n为常数)有两个不相等的实数根,求n的取值范围;
(3)若关于x的一元二次方程x2+mx-k=0(k为常数)在-2<x<3的范围内有解,求k的取值范围.
数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:
(1)如图1,若连接矩形ABCD的对角线AC、BD相交于点O,则Rt△ADC可由Rt△ABC经过旋转变换得到,这种旋转变换的旋转中心是点 、旋转角度是 °;
(2)如图2,将矩形纸片ABCD沿折痕EF对折、展平.再沿折痕GC折叠,使点B落在EF上的点B′处,这样能得到∠B′GC.求∠B′GC的度数.
(3)如图3,取AD边的中点P,剪下△BPC,将△BPC沿着射线BC的方向依次进行平移变换,每次均移动BC的长度,得到了△CDE、△EFG和△GHI(如图4).若BH=BI,BC=a,则:①证明以BD、BF、BH为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于50,请求出a的最大整数值.