启教通信息平台
  首页 / 试题 / 高中数学 / 试卷选题

广东省东莞市高二上学期期末考试文科数学试卷

抛物线的焦点坐标是(  )

A. B. C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

若函数在区间内是单调递减函数,则函数在区间内的图象可以是(  )

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

数列的通项为,其前项和为,则使成立的的最小值为(  )

A. B. C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

若方程表示双曲线,则实数的取值范围是(  )

A. B. C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

已知命题,则为(  )

A.
B.
C.
D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

中,角所对的边分别是,且,则(  )

A. B. C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

数列的通项公式,已知它的前项和,则项数(  )

A. B. C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

若实数满足,则的最小值是(  )

A. B. C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

已知的等差中项,正数的等比中项,那么的从小到大的顺序关系是(  )

A. B.
C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

已知,则的值为(  )

A. B.
C. D.
来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

函数的定义域是        (用集合表示)

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

已知,则曲线在点处的切线斜率为      

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

已知数列,且,则        

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

已知是椭圆的两个焦点,过且与椭圆长轴垂直的弦交椭圆于两点,且是等腰直角三角形,则椭圆的离心率是        

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分12分)如果不等式的解集为
(1)求实数的值;
(2)设,若的充分条件,求实数的取值范围.

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分12分)对于函数,若满足,求的长.

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知等差数列中,,各项为正数的等比数列中,
(1)求数列的通项公式;
(2)若,求数列的前项和

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分14分)北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:

 
用煤(吨)
用水(吨)
产值(万元)
生产一吨甲种产品



生产一吨乙种产品



会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多吨,用水最多吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分14分)平面内一动点到定点和到定直线的距离相等,设的轨迹是曲线
(1)求曲线的方程;
(2)在曲线上找一点,使得点到直线的距离最短,求出点的坐标;
(3)设直线,问当实数为何值时,直线与曲线有交点?

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数(其中,无理数).当时,函数有极大值
(1)求实数的值;
(2)求函数的单调区间;
(3)任取,证明:

来源:2014-2015学年广东省东莞市高二上学期期末考试文科数学试卷
  • 题型:未知
  • 难度:未知