广东省珠海市高二下学期期末考试理科数学试卷
四名同学报名参加三项课外活动,每人限报其中一项,不同报名方法共有( )
A.12 | B.64 | C.81 | D.7 |
8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )
A. | B. | C. | D. |
在比赛中,如果运动员甲胜运动员乙的概率是,那么在五次比赛中,运动员甲恰有三次获胜的概率是( )
A. | B. | C. | D. |
设6件产品中有4件合格品2件不合格品,从中任意取2件,则其中至少一件是不合格品的概率为 ( )
A.0.4 | B.0.5 | C.0.6 | D.0.7 |
利用数学归纳法证明“”时,在验证成立时,左边应该是( )
A.1 | B. | C. | D. |
曲线在点处的切线的倾斜角为( )
A.30° | B.45° | C.60° | D.120° |
通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
|
男 |
女 |
总计 |
爱好 |
40 |
20 |
60 |
不爱好 |
20 |
30 |
50 |
总计 |
60 |
50 |
110 |
算得,参照附表得到的正确结论是 ( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
若下表数据对应的关于的线性回归方程为 ,则= .
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
观察分析下表中的数据:
多面体 |
面数() |
顶点数() |
棱数() |
三棱锥 |
5 |
6 |
9 |
五棱锥 |
6 |
6 |
10 |
立方体] |
6 |
8 |
12 |
猜想一般凸多面体中,面数、顶点数、棱数:、、所满足的等式是 .
如图,用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色,不同的涂色方案有 种.
一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:
1 |
2 |
3 |
4 |
5 |
|
P |
0.4 |
0.2 |
0.2 |
0.1 |
0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.
(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;
(2)求的分布列及期望.
某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,得到成绩分布的频率分布直方图如图:
(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(2)将上述调查所得到的频率视为概率.现在从该校大量高一学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的合格人数为.若每次抽取的结果是相互独立的,求的分布列和期望;
|
高一 |
高二 |
合计 |
合格人数 |
|
|
|
不合格人数 |
|
|
|
合计 |
|
|
|
(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系” .
已知数列满足,
(1)求,,,;
(2)归纳猜想出通项公式 ,并且用数学归纳法证明;
(3)求证能被15整除.
已知函数满足且在时函数取得极值.
(1)求的值;
(2)求函数的单调区间;
(3)求函数在区间上的最大值的表达式.