福建省莆田市初中毕业(升学)模拟考试数学试卷
下列计算中,正确的是
A.2a+3b=5ab | B.(3a3)2=6a6 | C.a6÷a2=a3 | D.-3a+2a=-a |
数据:2,5,4,5,3,4,4的众数与中位数分别是
A.4,3 | B.4,4 | C.3,4 | D.4,5 |
餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为
A.5×1010千克 | B.50×109千克 | C.5×109千克 | D.0.5×1011千克 |
如图所示,是某几何体的三视图,根据图中数据,求得该几何体的体积为
A.60π | B.70π | C.90π | D.160π |
如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为
A. | B. | C. | D. |
如图所示,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于
A. | B. | C. | D. |
定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图所示,直线l:经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn) (n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n为正整数).若x1=d(0<d<1),当d为( )时,这组抛物线中存在美丽抛物线.
A.或 | B.或 | C.或 | D. |
掷一枚质地均匀的骰子,骰子的六个面上分别标有数字1~6,掷得朝上的一面的数字为奇数的概率是_________.
如图所示,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是_________.
如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.
(本小题满分6分)如图所示,已知AB∥CD,AB=CD,BF=CE,求证:AE=DF.
某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.
九年级300名同学完成家庭作业时间情况统计图
时间 |
1小时左右 |
1.5小时左右 |
2小时左右 |
2.5小时左右 |
人数 |
50 |
80 |
120 |
50 |
根据以上信息,请回答下列问题:
(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;
(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;
(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)
(本小题满分8分)如图所示,在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(-6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=,求△AOB的面积.
(本小题满分10分)已知,如图所示,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E,若DE=6cm,AE=3cm,求⊙O的半径.
(本小题满分10分)在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套,当销售单价为多少元时,才能在一个
(本小题满分12分)如图所示,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离 (用含a的代数式表示)