浙江省杭州市滨江区中考一模数学试卷
在一个不透明的口袋中装有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸出一个小球,其标号大于2的概率为( )
A. | B. | C. | D. |
如图,在△ABC中,∠C=36°,将△ABC绕点A逆时针旋转60°得到△AED,AD与BC交于点F,则∠AFC的度数为( )
A.84º | B.80º | C.60º | D.90º |
如图是由6个同样大小的正方体摆成的几何体.将标有“1”的这个正方体移走后,所得几何体( )
A.俯视图改变,左视图改变 | B.主视图改变,左视图不变 |
C.俯视图不变,主视图不变 | D.主视图不变,左视图改变 |
如果点A(﹣4,y1),B(﹣1,y2),C(3,y3)都在反比例函数的图象上,那么y1,y2,y3的大小关系是( )
A.y1<y3<y2 | B.y3<y1<y2 | C.y1<y2<y3 | D.y3<y2<y1 |
一个圆锥的底面半径为8cm,其侧面展开图的圆心角为240°,则此圆锥的侧面积为( )
A. | B. | C. | D. |
如图,已知OP平分∠AOB,∠AOB=, PC⊥OA于点C, PD⊥OB于点D, EP∥OA,交OB于点E ,且EP=6.若点F是OP的中点,则CF的长是( )
A.6 | B. | C. | D. |
二次函数y=ax2+bx+c(a,b,c为常数,且a<0)的图象经过点(﹣1,1),(4,﹣4).下列结论:(1)<0;(2)当x>1时,y的值随x值的增大而减小;(3)是方程ax2+(b+1)x+c=0的一个根;(4)当﹣1<x<4时,ax2+(b+1)x+c>0.其中正确的个数为( )
A.1个 | B.2个 | C.3个 | D.4个 |
如图, Rt△ABC的斜边AB经过坐标原点,两直角边分别平行于坐标轴,点C在反比例函数 的图象上,若点A 的纵坐标为,若点B 的横坐标为﹣2,则k的值为 .
如图1为两个边长为1的正方形组成的格点图,点A,B,C,D都在格点上,AB,CD交于点P,则tan∠BPD= ,如果是n个边长为1的正方形组成的格点图,如图2,那么tan∠BPD= .
某校课外兴趣小组在本校学生中开展对“消防安全知识”了解情况的专题调查活动,采取随机抽样的方式进行问卷调查,调查的结果分为A,B,C,D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表格:
类别 |
A |
B |
C |
D |
频数 |
|
32 |
28 |
a |
频率 |
m |
|
0.35 |
|
(1)根据表中数据,问在关于调查结果的扇形统计图中,类别为B的学生数所对应的扇形圆心角的度数为多少?
(2)若A类学生数比D类学生数的2倍少4,求表中a,m的值;
(3)若该校有学生955名,根据调查结果,估计该校学生中类别为C的人数约为多少?
如图,在四边形ABCD中,AD∥BC, AB=AC,BE=CE=AD.
(1)求证:四边形ECDA是矩形;
(2)当△ABC是什么类型的三角形时,四边形ECDA是正方形?请说明理由.
一次函数(为常数,且).
(1)若点在一次函数的图象上,求的值;
(2)当时,函数有最大值2,请求出的值.
如图,海边有两个灯塔A,B.即将靠岸的轮船得到信息:海里有一个以AB为弦的弓形暗礁区域,要求轮船在行驶过程中,对两灯塔的张角不能超过.当轮船航行到P点时,测得轮船对两灯塔的张角∠APB刚好等于.
(1)请用直尺和圆规在图中作出△APB的外接圆 (作出图形,不写作法,保留痕迹);
(2)若此时轮船到B的距离PB为700米,已知AB=500米,求出此时轮船到A的距离.
(1)如图22-1,等腰Rt△ABO放在平面直角坐标系中, 点A,B 的坐标分别是A(0,1),B(1,0).在x轴正半轴上取D(m,0),在AD右上方作等腰Rt△ADE,∠ADE=.
①求出E点的坐标(可用含m的代数式表示);
②证明对于任意正数m,点E都在直线上;
(2)将(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图22-2,A(0,),B(1,0).Rt△ADE中, ∠ADE=,∠AED=.D(m,0)是x轴正半轴上任意一点,则不论m取何正数,点E都在某一条直线上,请求出这条直线的函数关系式;
(3)将(2)中Rt△AOB保持不动,取点C(2, ),在x轴正半轴上取D(m,0)(m>2), 然后在AD右上方作Rt△CDE, ∠CDE=,∠CED=.当m取不同值时,点E是否还是总在一条直线上? 若是,请求出直线对应的函数关系式,若不是,请说明理由.