河南省商丘市高三第二次模拟考试理科数学试卷
已知向量a = (,1),b = (0, -1),c = (k,),若a - 2b与c共线,则的值为( )
A. | B. | C. | D. |
下列命题,真命题是( )
A.a-b=0的充要条件是 |
B.R, |
C.R, |
D.若为假,则为假 |
设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )
A. | B. | C. | D. |
若将函数的图象向右平移个单位,所得图象关于y轴对称,则的最小正值是( )
A. | B. | C. | D. |
已知一个几何体的三视图是三个全等的边长为1的正方形,如图所示,则它的体积为( )
A. | B. | C. | D. |
已知以为焦点的抛物线上的两点满足,则弦AB中点到准线的距离为( )
A. | B. | C. | D. |
已知定义在R上的函数对任意都满足,且当时,,则函数的零点个数为( )
A. | B. | C. | D. |
已知的三个顶点在以为球心的球面上,且,AB=AC=2,球心到平面ABC的距离为1,则球O的表面积为 .
(本小题满分12分)已知正项等差数列的前项和为,且满足,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,,求数列的前项和
(本小题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是
(Ⅰ)分别求出小球落入袋和袋中的概率;
(Ⅱ)在容器的入口处依次放入个小球,记为落入袋中的小球个数,求的分布列和数学期望.
(本小题满分12分)如图,已知四棱锥的底面为菱形,,,.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
(本小题满分12分)已知函数 (R).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对任意实数,当时,函数的最大值为,求的取值范围.
(本小题满分10分) 选修4—1:几何证明选讲:如图,四边形ABCD内接于⊙,过点作⊙的切线EP交CB的延长线于,已知.
证明:(Ⅰ);(Ⅱ).
(本小题满分10分) 选修4—4:坐标系与参数方程
已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为:,曲线的参数方程为:
(Ⅰ)写出直线的直角坐标方程;
(Ⅱ)求曲线上的点到直线的距离的最大值.